
TEMPERATURE-DEPENDENT NUCLEAR MAGNETIC RESONANCE SPECTRUM OF OCTAMETHYLSEMIBULLVALENE

F. A. L. Anet and G. E. Schenck

Contribution No. 2614 from the Department of Chemistry, University of California, Los Angeles, California 90024

(Received in USA 24 August 1970; received in UK for publication 15 September 1970)

Several systems are now known containing a 3,4-homotropilidene moiety. Of these, the 1 c,d 1f,2 3
builvalene,dihydrobullvalene and barbaralane systems as well as homotropilidene itself have been shown to exhibit temperature-dependent nmr spectra. For semibullvalenes,
however, temperature-independent nmr spectra have been reported down to -110° (semibullvalene)
4b
and -100° (octamethylsemibullvalene). We now wish to report the temperature-dependence of a semibullvalene nmr spectrum.

In its high temperature spectrum (Fig. 1, -60°), octamethylsemibullvalene (I) (2% I in vinylchloride/pyridine = 5:1, 100 MHz) exhibits the 1:2:1 pattern expected of a semibull-valene undergoing a rapid Cope rearrangement. The resonances of methyls 1,3,5 and 7 are averaged to give a single peak B of relative intensity 2 at τ 8.59. Methyls 2 and 6 average to a single peak C of intensity 1 at τ 9.13, and methyls 4 and 8 appear as a single peak A of intensity 1 at τ 8.55.

Upon cooling peaks B and C widen much more rapidly than A, and at -141° B begins to split into two peaks. At -151° peaks B and C are split into B_1 , B_2 and C_1 , C_2 respectively, intensity ratios B_1 : A: B_2 : C_1 : C_2 being about 2:2:2:1:1 as expected for a semibullvalene undergoing the Cope rearrangement slowly on the nmr time scale.

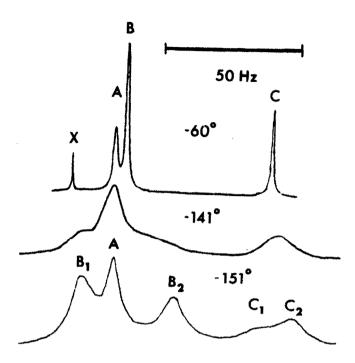


Figure I. 100 MHz nmr spectra of octamethylsemibullvalene at various temperatures. X = octa-methylcyclooctatetraene impurity.

At -151° the lines are rather broad with B_1 , B_2 , C_1 and C_2 being wider than A, and A in turn wider than the TMS reference line (half-width 2 Hz at -151°). This is partly due to the non-averaging at low temperatures of long range couplings (about 1 Hz in similar systems), but mainly to chemical exchange still occurring at an appreciable rate at -151°. The dissymmetric appearance of C_1 , C_2 is ascribed to different relaxation times T_2^0 for the two methyl groups.

Peak $B_1 (\simeq \tau~8.42)$ is assigned to methyls 5 and 7 for its closeness to the chemical shift of octamethylcyclooctatetraene ($\tau~8.40$). Peak $B_2 (\tau~8.75)$ therefore originates from methyls 1 and 3. On the basis of the shielding effect of cyclopropyl groups on cyclopropyl methyls, $C_2 (\tau~9.18)$ is assigned to methyl 2 and C_1 correspondingly to methyl 6.

From the coalescence temperature and the chemical shift difference between B $_1$ and B $_2$ the free energy of activation for the Cope rearrangement in octamethylsemibullvalene is calculated to be

$$\Delta F^{\dagger} = 6.4 \pm 0.2 \text{ kcal/mole at -141}^{\circ}$$
.

Free energies of activation are now available for all types of homotropilidene systems undergoing rapidly reversible degenerate Cope rearrangements (Table 1).

Table 1 Free Energy Barriers ΔF^{\dagger} in Homotropilidenes

Compound	$\Delta F^{\dagger a}$, kcal/mole	Temp.°C	Ref.
b 1,3,5,7-tetramethylhomotropilidene	13.6	0	3ъ
bullvalene	12.8	100	le
dihydrobullvalene	9.5	-40	1d
barbaralone	9.6	-55	2a
barbaralane	7.8	-77	1f
octamethylsemibullvalene	6.4	-141	this work

Calculated from rate constants given in references.

The trend is somewhat obscured by the ΔF^{\dagger} 's for the Cope rearrangements in bullvalene and barbaralone which certainly reflect not only the effect of strain but also electronic 8,9 effects such as bicycloconjugation. Shortening the bridge between the 2 and 6 positions narrows the energy gap between the symmetrical bishomobenzene-like transition state and the less symmetrical ground state, but not enough to make octamethylsemibullvalene a symmetrical bishomobenzene.

Acknowledgements: G. E. Schenck thanks the University of California for a Regents' Graduate

Intern Fellowship. This work was supported by the National Science Foundation Grant No.

GP-10571

References

(a) G. Schröder, Angew. Chem., 75, 722 (1963); (b) M. Saunders, Tetrahedron Letters, 1699 (1963); (c) R. Merényi, J. F. M. Oth, G. Schröder, Chem. Ber., 97, 3150 (1964);
 (d) G. Schröder, J. F. M. Oth, R. Merényi, Angew. Chem. Int. Ed., 4, 752 (1965); (e)
 A. Allerhand, H. S. Gutowsky, J. Amer. Chem. Soc., 87, 4092 (1965); (f) W. von E. Doering, B. M. Ferrier, E. T. Fossel, J. H. Hartenstein, M. Jones, Jr., G. Klumpp, R. M. Rubin, M. Saunders, Tetrahedron, 23, 3943 (1967); (g) L. A. Paquette, T. J. Barton, E. B. Whipple, J. Amer. Chem. Soc., 89, 5481 (1967); (h) G. Schröder,

Numbering as in semibullvalene.

- Angew. Chem. Int. Ed., 4, 695 (1965); (i) G. Schröder, R. Merényi, J. F. M. Oth, Tetrahedron Letters, 773 (1964); (k) J. F. M. Oth, R. Merényi, J. Nielsen, G. Schröder, Chem. Ber., 98, 3385 (1965).
- (2) (a) Barbaralone: J. B. Lambert, <u>Tetrahedron Letters</u>, 1901 (1963); (b) W. von E. Doering,
 J. H. Hartenstein quoted in footnote 30 of ref. ld.
- (3) (a) W. von E. Doering, W. R. Roth, <u>Tetrahedron</u>, <u>19</u>, 715 (1963); (b) L. Birladeanu, private communication, to be published.
- (4) (a) H. E. Zimmerman, G. L. Grunewald, <u>J. Amer. Chem. Soc.</u>, <u>88</u>, 183 (1966); (b) R. Criegee,
 R. Askani, <u>Angew Chem.</u>, <u>80</u>, 531 (1968).
- (5) Obtained by a modification of Criegee's procedure.
- (6) J. W. Timberlake, Tetrahedron Letters, 149 (1970).
- (7) The free energies of activation are considered a good guideline for comparison though measured at different temperatures, since the entropies of activation are probably similar 9,1e and close to zero in degenerate Cope rearrangements.
- (8) M. J. Goldstein, <u>J. Amer. Chem. Soc.</u>, <u>89</u>, 6357 (1967).
- (9) P. Ahlberg, J. B. Grutzner, D. L. Harris, S. Winstein, J. Amer. Chem. Soc., in press, have found a barrier of >13.8 kcal/mole in protonated barbaralone.
- (10) Zimmerman and Grunewald have favored the classical structure on the basis of room temperature nmr and the similarity of uv spectra between semibullvalene and dihydrobullvalene.